Jai Subramanian Lab

Jai Subramanian Lab

Jai Subramanian
Lab Members
Jai Subramanian Lab group
Suraj Niraula

Suraj Niraula

Graduate Student | Subramanian Lab

Education:
  • (degree in progress) M.S., Biology, Indiana University of Pennsylvania, Indiana, PA
  • 2012, B.S., Pharmacy, Purbanchal University, Kathmandu, Nepal
Research Interests:
  • Neuropharmacology, stem cells and kidney regeneration using zebrafish as a model organism
  • Interested in working on neurological diseases with an ultimate goal of increasing health span rather than just life span
Oliver L'Esperance

Oliver L'Esperance

Graduate Student | Subramanian Lab

Education:
  • B.S., Neurobiology, University of Kansas, Lawrence, KS (2017)
Research Interests:
  • Memory impairment from neural damage
  • Visualizing memory consolidation in the mouse primary visual cortex via activity-dependent neural tagging and repeated in vivo two-photon microscopy
  • Role of reward processing in depression, anxiety, PTSD, and OCD
Austin Holt

Austin Holt

Graduate Student | Subramanian Lab

Education:
  • Ross University School of Veterinary Medicine (completed four semesters) Basseterre, St. Kitts (2018-2019)
  • B.S., Biochemistry, Arizona State University, Tempe, AZ (2016)
Research Interests:
  • Behavioral analysis and neural imaging of mice to determine memory formation and retention
Ethan Hunt

Ethan Hunt

Undergraduate Research Associate | Subramanian Lab

Education:
  • (degree in progress) Human Biology, University of Kansas
Research Interests:
  • Pre-Med, interested in the body and, more specifically, the brain

Research Interests

The brain has the incredible ability to process and store experience in interconnected ensembles of neurons. During a novel experience, new information can be stored by altering either the synaptic connectivity or the strength of existing synapses, termed synaptic plasticity. Impairments to these mechanisms are associated with many neurodevelopmental and neurodegenerative diseases.

Despite the wealth of knowledge accumulated over the years investigating mechanisms of synaptic plasticity, very little is known about excitatory and inhibitory synaptic remodeling in the mammalian brain in vivo. This is partly because we lacked tools to visualize synapses in living animals. With the advent of multi-photon microscopy and fluorescence labeling techniques, it has now become possible to visualize the dynamics of synapses in the intact brain of living animals through a glass cranial window.

My research program will investigate how molecules, circuits and neuronal ensemble activity influence plasticity of excitatory and inhibitory synapses. We will study these mechanisms in neurons of sensory and association cortices in the context of memory storage, and how they are disrupted in genetically tractable mouse models of disease. To achieve this we will use a variety of state of the art approaches, such as single neuron genetic manipulations, in vivo synaptic labeling and multi-color two photon imaging.

Education

  • Research Scientist, Massachusetts Institute of Technology, Cambridge, MA (2017)
  • Postdoctoral Fellow, National Institutes of Health, Bethesda MD (2011)
  • Ph.D., Molecular Biology, University of Southern California, Los Angeles, CA (2004)

Biography

During Jai  Subramanian's postdoctoral research, he used in vitro and in vivo imaging technologies to understand mechanisms of synaptic plasticity in mouse cortical neurons.

Subramanian’s research focuses on synaptic plasticity associated with learning and memory and their dysfunction in mouse models of neurodegenerative disorders. His lab utilizes state of the art approaches, such as single neuron genetic manipulations, in vivo synaptic labeling and multi-color two photon imaging.